Exploring the Structure-Dependent Stability of Thiolated Metal Nanoparticles

Michael G. Taylor and Giannis Mpourmpakis

Department of Chemical and Petroleum Engineering, Unversity of Pittsburgh, Pittsburgh PA, 15213

"Magic numbers" in the stability of $M_n(SR)_m$ nanoparticles and their corresponding atomicallyprecise structures have recently been identified with advancements in experimental synthesis and characterization techniques.^{1,2} Traditionally, this experimentally observed magic stability has been explained by electron-counting methods such as the "superatom model".³ However, this model has not held in rationalizing the stability of several recently-identified nanoparticle structures, such as the Au₂₀SR₁₆ and the Au₃₆SR₂₄.⁴ Herein, we introduce a theory developed utilizing density functional theory calculations relating the stability of the overall thiolated-metal nanoparticles to structure-dependent descriptors. Using the identified descriptors we rationalize the stability of various monometallic atomically-precise nanoparticles both for charged and neutral systems. Our findings aid in accelerating the discovery of atomically precise, stable metal nanoparticles and suggest a new way of rationalizing thermodynamic stability in nanoscale systems.

- 1. Jin, R. Atomically precise metal nanoclusters: stable sizes and optical properties. *Nanoscale* **15**, 1549–1565 (2015).
- 2. Mpourmpakis, G., Caratzoulas, S. & Vlachos, D. G. What controls Au nanoparticle dispersity during growth? *Nano Lett.* **10**, 3408–3413 (2010).
- 3. Walter, M. *et al.* A unified view of ligand-protected gold clusters as superatom complexes. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 9157–9162 (2008).
- 4. Zeng, C., Liu, C., Chen, Y., Rosi, N. L. & Jin, R. Gold-Thiolate Ring as a Protecting Motif in the Au20(SR)16 Nanocluster and Implications. *J. Am. Chem. Soc.* **20**, 16–19 (2014).